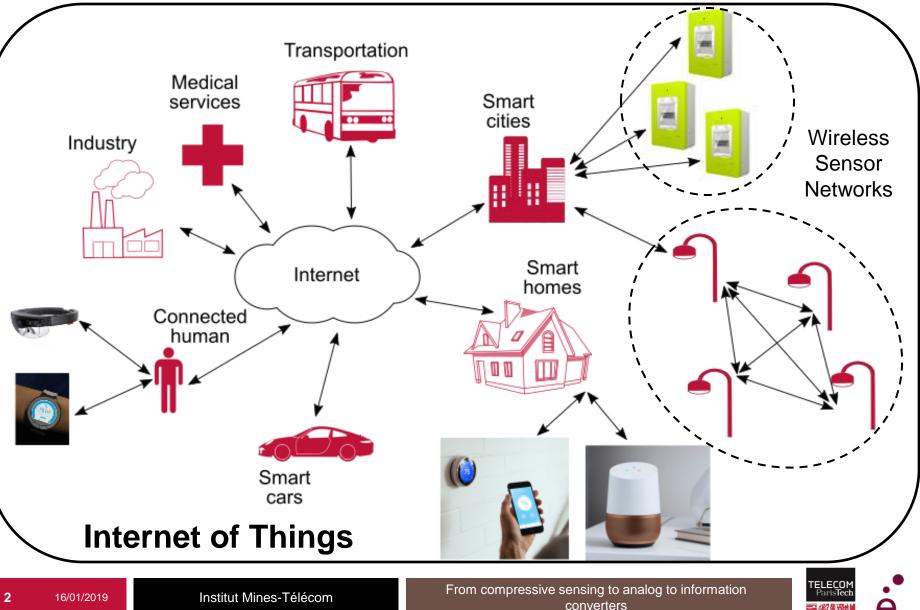


Une école de l'IMT

From compressive sensing to analog to information converters

Paul Chollet pachollet@telecom-paristech.fr 22/06/2018

The Internet of Things (IoT)



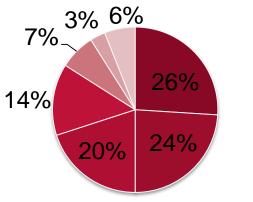
Global IoT market predictions

80 70 75.4 60 62,1 50 51.1 40 42,6 30 35,8 30.7 20 10 0 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Connected devices in billions

Source: Statista 2015

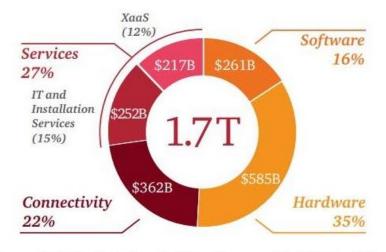
IoT by sector



- Smart Cities
- Industry
- Healthcare
- Smart Homes
- Connected Cars
- Wearables
- Others

Source: Growthenabler 2017

IoT revenue by technology in 2020



Sources: "IDC's Worldwide Internet of Things Taxonomy, 2015," IDC, May 2015; "Worldwide Internet of Things Forecast, 2015 – 2020," IDC, May 2015.

16/01/2019 Institut Mines-Télécom

3

Digital data volume explosion

The **Digital Universe** Is Huge -And **Growing Exponentially**

4.4 zettabytes

If the Digital Universe were

represented by the memory in a

stack of tablets, in **2013** it would have stretched two-thirds the

2013

way to the Moon*

In 2013, there were almost as many bits in the Digital Universe as stars in the physical universe

> Source: IDC, 2014 • iPad Air - 0.29* thick, 128 GB

By **2020**, there would be 6.6 stacks from the Earth to the Moon*

ZETTABYTES

2020

EMC DIGITAL

With Research & Analysis by IDC

- 1. Wireless sensor networks and smart sensors
- 2. Principle of compressive sensing
- **3. Architecture for analog to information converters**
- 4. Signal reconstruction algorithms
- **5.** Conclusion

1. Wireless sensor networks and smart sensors

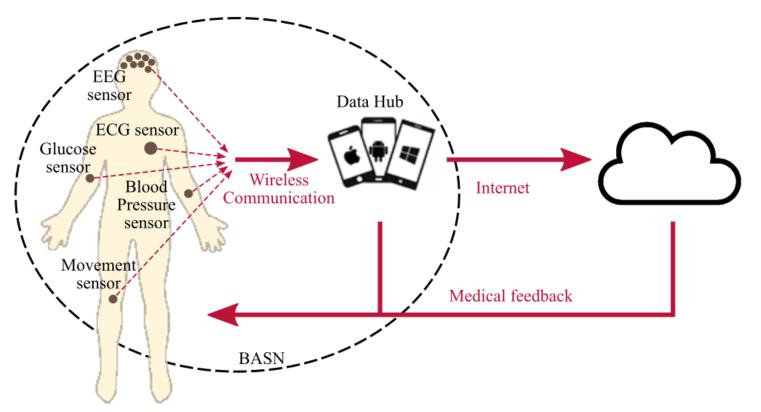
Wireless sensor networks and smart sensors

- 2. Principle of compressive sensing
- 3. Architecture for analog to information converters
- 4. Signal reconstruction algorithms
- 5. Conclusion

- What are the constraints for WSN and smart sensors ?
- How to overcome these constraints ?

Wireless sensor network architecture

Example of the Body Area Sensor Network



Group activity:

- 4/5 students, 5 minutes
- Make a list of the constraints for the sensors and rank them

Security

- Data confidentiality and integrity
- Security mechanisms embedded into circuits

Interoperability

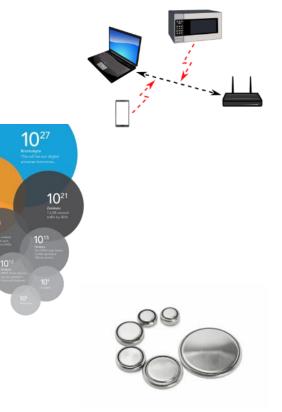
- Interferences between WSN
- Specific communication protocols

Data transfer

- Increasing amount of data and bandwidth
- Saturation of the RF spectrum

Power consumption

- Sensor working on batteries
- Energy source replacement is not always possible



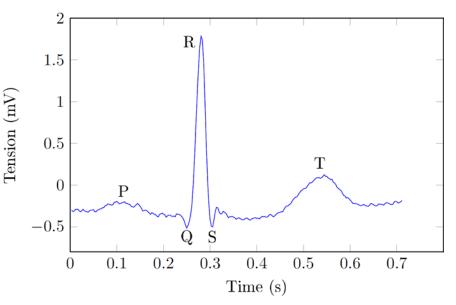
From compressive sensing to analog to information converters

1024

Example 1: electrocardiogram (ECG) signal

Cardiac arrhythmia detection

- Heart diseases responsible for 15.5 % of worldwide death
- Well studied subject



ECG signal characteristics

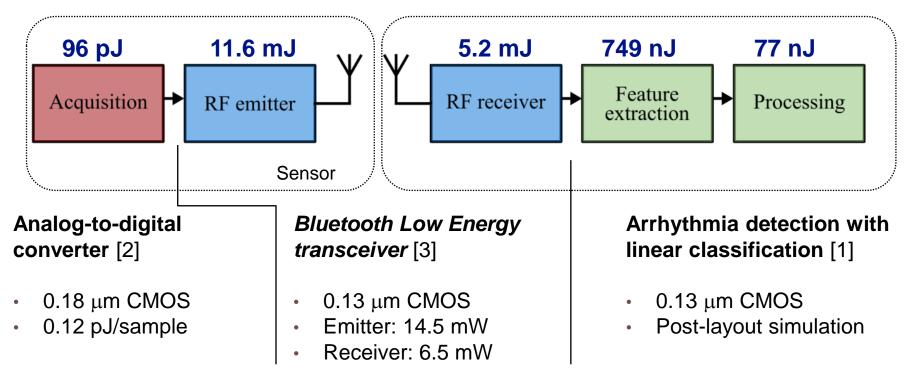
- Continuous signal
- Cycle duration: 0.5 0.9 s
- Sampling frequency: 200 1000 Hz
- Precision: ~ 10 bits

Application

- Arrhythmia detection from [1]
- Signal is 800 10-bit samples
- 1 kHz sampling frequency

[1] T. Chen *et al*. Design of a Low-Power On-Body ECG Classifier for Remote Cardiovascular Monitoring Systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, March 2013

Example 1: simple sensor

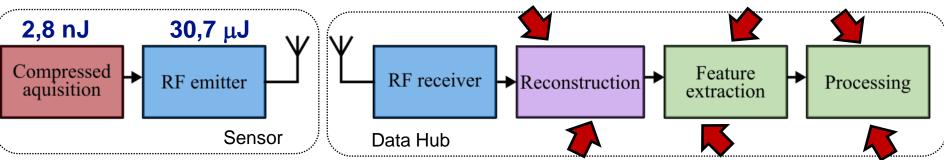


Transmission require the most energy

[2] L. Yan *et al.* A 0.5- V 12- W Wirelessly Powered Patch-Type Healthcare Sensor for Wearable Body Sensor Network. IEEE Journal of Solid-State Circuits, November 2010.

[3] A. C. W. Wong *et al.* A 1 V 5 mA Multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications. IEEE Journal of Solid-State Circuits, January 2013.

Example 1: using compression



Compress the data during acquisition: compressed sensing

- Use knowledge on signal structure
- Reduce the amount of data to be transmitted

Analog-to-information converter [4]

- 0.13 μm CMOS
- 4 fold compression
- 14 pJ/compressed sample

Limitations

- Reconstruction Algorithm is complex
- Reconstruction error increases with the compression factor

[4] D. Gangopadhyay et al. Compressed Sensing Analog Front-End for Bio-Sensor Applications. IEEE Journal of Solid-State Circuits February 2014.

Sensor energy requirement is divided by 377

Example 2: Astrophysical measurements

Radio emission from Jupiter

- S-burst: interaction between Jupiter and its satellite lo
- Range: [0.45 40] MHz
- Digital receiver connected to the Nançay Decametric Array in France

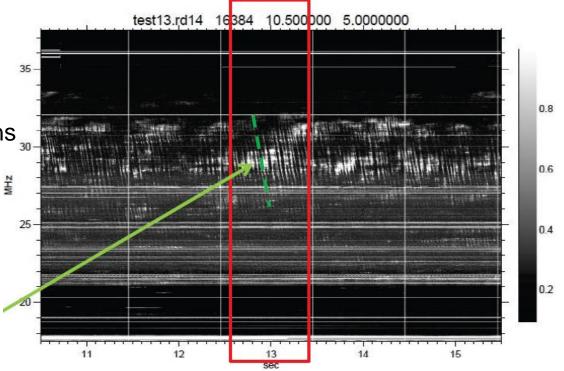
Example 2: Astrophysical measurements

Receiver

- Spectrogram of Jovian Signal
- 14 bit @ 80 Ms/s
- 5 sec = 5.6 billions bits
- Vertical lines: periodic calibrations
- Horizontal lines: terrestrial radio broadcasts (radars, radio, TV)

Useful information

- Frequency drift: green slope
- Value around 20 MHz/s



How to get this information with far fewer samples?

1. Wireless sensor networks and smart sensors

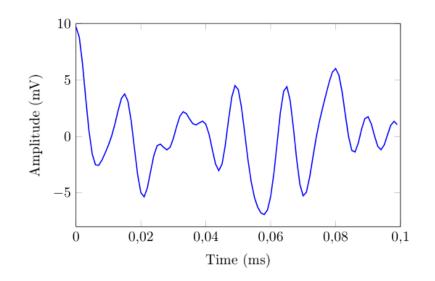
Principle of compressive sensing

2. Principle of compressive sensing

- 3. Architecture for analog to information converters
- 4. Signal reconstruction algorithms
- 5. Conclusion

- What is compressive sensing?
- What are its pros and cons?

Nyquist and Information rate



3 p_3 PP_4 p_2 $\mathbf{2}$ Signal Power _p₅ p_1 1 Ťϝ 204060 80 100120140Frequency (kHz)

Nyquist Rate

- Shannon-Nyquist theorem for perfect reconstruction: $F_s \ge 2F_{max}$ =2B
- Signal representation require 2*W*T samples
- For T=1 ms and B=123 kHz => 246 samples

Information Rate

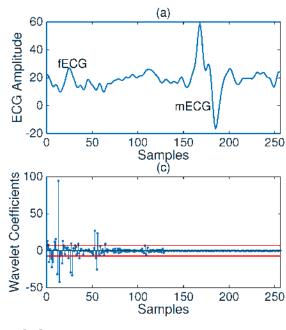
- Entropy of the signal
- Reduced by a-priori information
- 5-tone signal: 10 elements
 - f_1 to f_5 and p_1 to p_5

CS: Acquire signal as close to IR as possible

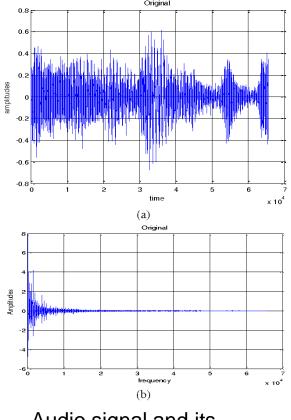
Definition

A signal is k-sparse if it can be represented with only k non-zero element in a specific base

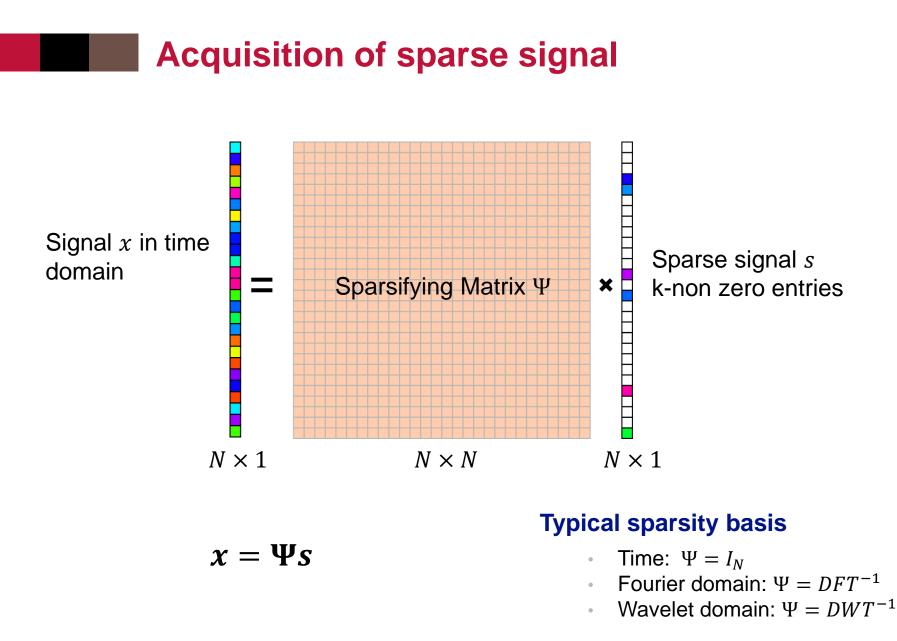
Example



ECG signal and its 4-level Db4 wavelet transform



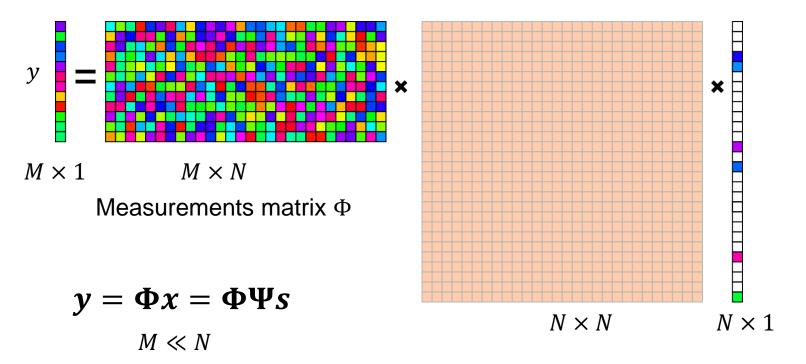
Audio signal and its Fourier transform



17

Principle

Take only M samples or linear measurement instead of N



Can we find x or s from y?

18

Principle

- Given $y = \Phi \Psi s$
- Find s with maximal sparsity
- $M \ll N$: Many possible solutions ill-posed inverse problem

Solution: add constraint

- Use l_2 norm: $\hat{s} = \arg \min ||s||_2 s.t$: $y = \Phi \Psi s$
 - Wrong: output a non sparse solution
- Use l_0 norm: $\hat{s} = \arg \min \|s\|_0 s.t$: $y = \Phi \Psi s$
 - Exact solution but NP hard problem (require exhaustive search)
- Use l_1 norm: $\hat{s} = \arg \min ||s||_1 s.t.: y = \Phi \Psi s$
 - Linear problem and high probability of exact solution if *M* big enough [5]
 - Minimum *M* depends on measurement matrix and signal sparsity

True for any measurement matrix Φ ?

[5] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles : exact signal reconstruction from highly incomplete frequency information. *IEEE Transactions on Information Theory*, 52(2) :489–509, February 2006.

Signal Recovery Condition

Restricted Isometry Property (RIP)

- Assuming s is k-sparse
- $\forall p_k \ k sparse \ (1 \delta_k) \|p_k\|_2^2 \le \|\Phi \Psi p_k\|_2^2 \le (1 + \delta_k) \|p_k\|_2^2$
- $0 \leq \delta_k \leq 1$ is the isometry constant of $\Phi \Psi$

Hard to check in practice

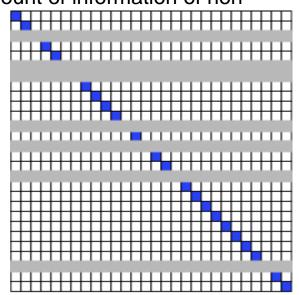
Coherence

20

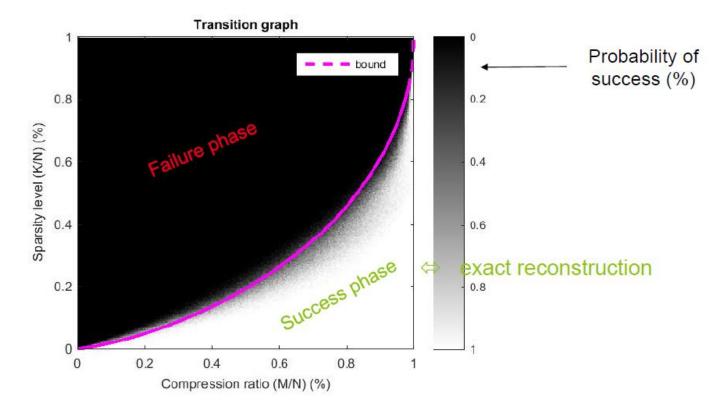
- $\mu(\Phi, \Psi) = \sqrt{N} \max_{1 \le j,k \le N} |\langle \phi_j, \psi_k^T \rangle|$
- Ensure that every measurement carries useful amount of information of nonzero element of s.
- Must be as close as possible to lower bound 1

Practical measurement matrices

- Random matrices
- +/- 1 Bernoulli matrices
- Random row selection matrices (Only for non time sparse signal)



Performance evaluation



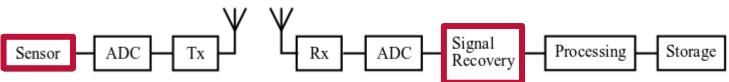
Reconstruction SNR (RSNR)

$$RSNR = \frac{\|s\|_2^2}{E(\|\hat{s} - s\|_2^2)}$$

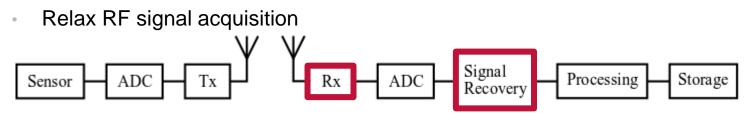
Where to apply CS in processing chain?

Sensor level

Relax RF data throughput

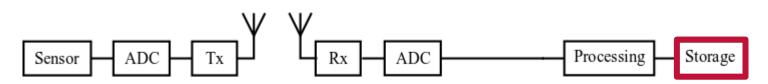


Analog Receiver level



Storage level (compression)

Relax memory requirements



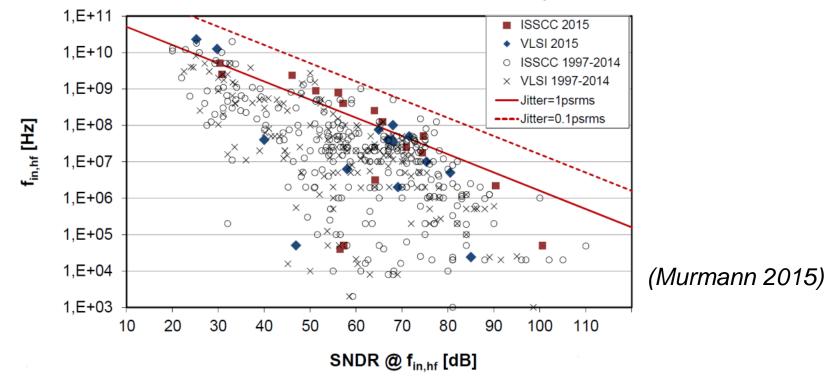
1. Wireless sensor networks and smart sensors

Architecture for analog to information converters

- 2. Principle of compressive sensing
- 3. Architecture for analog to information converters
- 4. Signal reconstruction algorithms
- 5. Conclusion

A2I converter advantages

Traditional ADC are limited in the maximum achievable SNDR for a given bandwidth

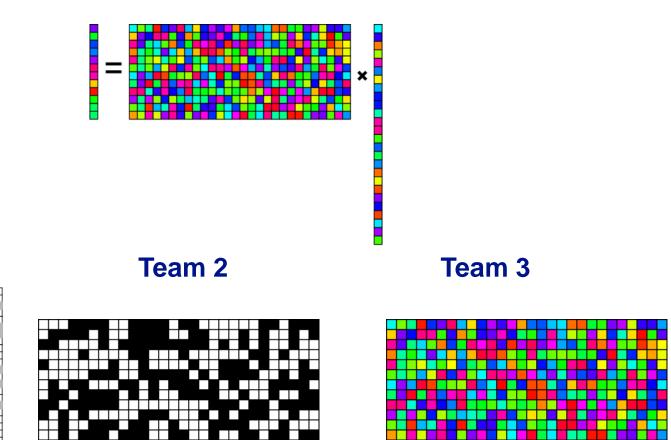


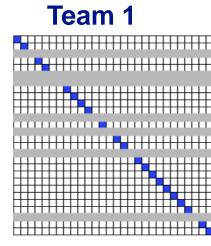
Objectives

- Improve effective bandwidth by using sparsity of input signal
- Improve resolution (SNDR) by sub-Nyquist sampling
- Decrease the amount of sample acquired

Let's think a bit

- Form three team within the class
- Each team think of an architecture to implement a A2I converter





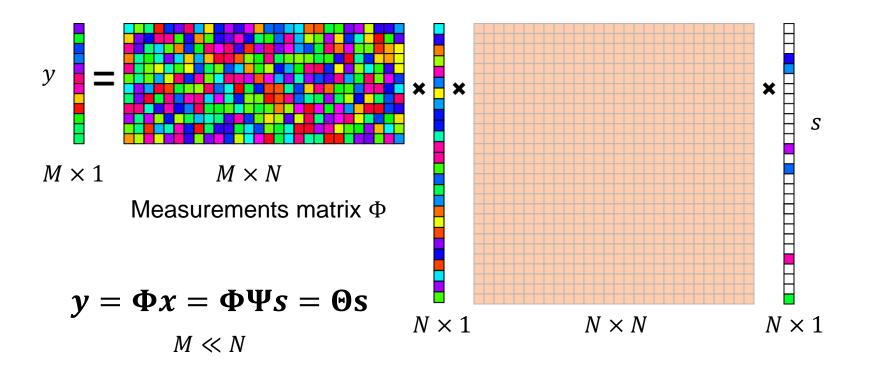
16/01/2019

Institut Mines-Télécom

1. Wireless sensor networks and smart sensors

Signal reconstruction algorithms

- 2. Principle of compressive sensing
- 3. Architecture for analog to information converters
- 4. Signal reconstruction algorithms
- 5. Conclusion



Can we find *s* from *y* ?

Convex optimization solution

Basis Pursuit (BP)

- Solve: $\hat{s} = \arg \min \|s\|_1 s.t.$: $y = \Theta s$
- Will find the sparsiest solution
- Might not converge if noisy measurements

Least absolute shrinkage and selection operator (LASSO)

- Solve: $\hat{s} = \arg \min \|s\|_1 s.t.: \|y \Theta s\|_2 < \epsilon$
- The solution is more robust to noise
- Noise controlled with ϵ

Basis Pursuit De-Noising (BPDN)

- Solve: $\hat{s} = \arg \min \|y \Theta s\|_2^2 + \lambda \|s\|_1$
- Make a compromise between error and sparsity
- Controlled by λ

Solving method

- Primal-dual interior point
- Adaptive gradient

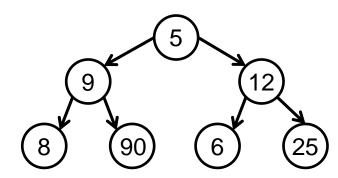
Complexity in $O(N^3)!$

Principle

- Find a solution with iterative process
- At each iteration choose the best solution according to certain criteria
- Pro: less complex
- Con: does not guarantee a global optimum, only a local one

Example

- Find the largest sum while descending a tree
- Greedy criteria: choose the path providing the highest result



Greedy solution: 42 Optimal solution: 104

Orthogonal Matching Pursuit

Find a K-sparse solution by selecting non-zero element one by one

Input

- $M \times N$ measurement matrix Θ
- Measurement vector y

• K

Initialization

- Residual: $r_0 = y$
- Index set: $\Omega_t = \emptyset$
- Matrix of chosen atom: $\Theta_0 = []$
- Vector of signal amplitude: $a_0 = []$
- Increment index: t = 1

Procedure

1. Find:
$$\omega_t = \arg \max_{1 \le j \le N} |\langle r_{t-1}, \theta_j \rangle|$$

Find column with maximum correlation with residue

- 2. Update: $\Omega_t = \Omega_{t-1} \cup \omega_t$; $\Theta_t = \begin{bmatrix} \Theta_0 & \theta_{\omega_t} \end{bmatrix}$
- 3. Solve: $a_t = \arg \min_{x} \|\Theta_t x y\|_2$

Least square problem

- 4. Update residual: $r_t = y \Theta_t a_t$
- 5. Do t = t + 1

16/01/2019

6. Repeat until t = K

Greedy algorithm

Compressive Sampling Matching Pursuit (CoSaMP)

- Similar to OMP
- Select the 2*K* maximum correlation columns
- Keeps only the K highest value of a_t

Normalized Iterative Hard Thresholding (NIHT)

- Do not try select columns to minimize residual
- Select solution:
 - Minimizing the residual
 - Maximizing the difference between the current solution and previous one

Method	OMP	CoSaMP	NIHT
Complexity	O(KMN)	$O(\log(K)MN)$	$O(\log(K)MN)$

Algorithms comparison for biosensors [9]

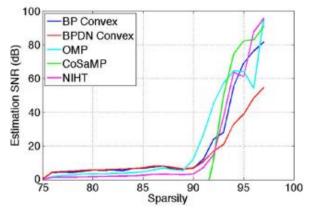


Fig. 15. ECG signal reconstruction accuracy.

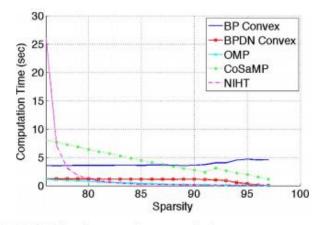


Fig. 16. ECG signal reconstruction computation time.

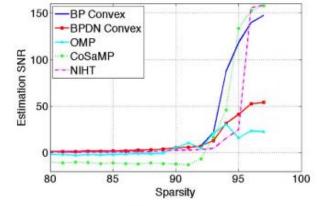


Fig. 17. EMG time-domain signal reconstruction accuracy.

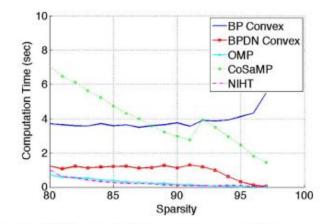


Fig. 18. EMG time-domain signal reconstruction computation time.

There is no general best choice

[9] A. M. R. Dixon, E. G. Allstot, D. Gangopadhyay and D. J. Allstot, "Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors," in *IEEE Transactions on Biomedical Circuits and Systems*, vol. 6, no. 2, pp. 156-166, April 2012.

43 16/01/2019	Institut Mines-Télécom	From compressive sensing to analog to information	TELECOM ParisTech	٠
		converters	王教 劉朝	F

1. Wireless sensor networks and smart sensors

Conclusion

- 2. Principle of compressive sensing
- 3. Architecture for analog to information converters
- 4. Signal reconstruction algorithms
- 5. Conclusion

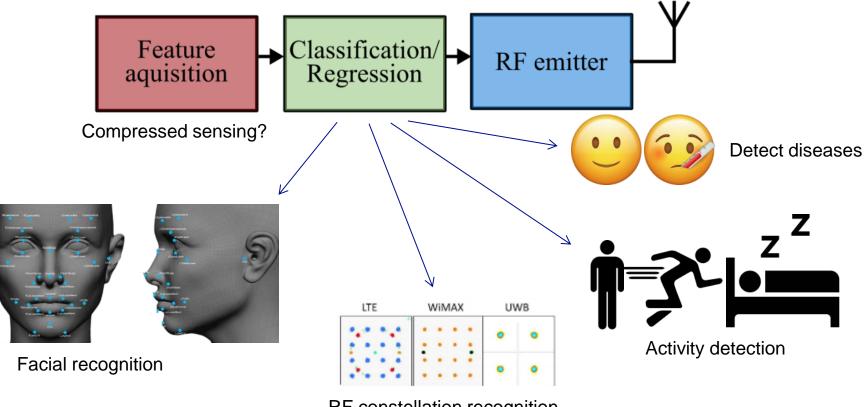
CS take advantages of the signal sparsity to overcome sensing problems

But there are many remaining challenges

- Acquisition and reconstruction must be robust to acquisition noise
- How to quantize the measurement?
- How to find the ideal basis giving a sparse signal
- Use of random matrices. Could we find more practical matrices?
- Development of efficient embeddable recovery algorithms
- Can we exploit the signal in its compressed form?

Towards Analog to feature/classification converter

- Extract feature directly from the analog signal
- Use classifier with the extracted features



RF constellation recognition

[1] T. Chen *et al*. Design of a Low-Power On-Body ECG Classifier for Remote Cardiovascular Monitoring Systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, March 2013

[2] L. Yan *et al.* A 0.5- V 12- W Wirelessly Powered Patch-Type Healthcare Sensor for Wearable Body Sensor Network. IEEE Journal of Solid-State Circuits, November 2010.

[3] A. C. W. Wong *et al.* A 1 V 5 mA Multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications. IEEE Journal of Solid-State Circuits, January 2013.

[4] D. Gangopadhyay et al. Compressed Sensing Analog Front-End for Bio-Sensor Applications. IEEE Journal of Solid-State Circuits February 2014.

[5] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles : exact signal reconstruction from highly incomplete frequency information. *IEEE Transactions on Information Theory*, 52(2) :489–509, February 2006.

[6] M. Trakimas, R. D'Angelo, S. Aeron, T. Hancock and S. Sonkusale, "A Compressed Sensing Analog-to-Information Converter With Edge-Triggered SAR ADC Core," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 60, no. 5, pp. 1135-1148, May 2013.

[7] J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk and Y. Massoud, "Theory and Implementation of an Analog-to-Information Converter using Random Demodulation," 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, 2007, pp. 1959-1962.

[8] F. Chen, A. P. Chandrakasan and V. M. Stojanovic, "Design and Analysis of a Hardware-Efficient Compressed Sensing Architecture for Data Compression in Wireless Sensors," in *IEEE Journal of Solid-State Circuits*, vol. 47, no. 3, pp. 744-756, March 2012.

[9] A. M. R. Dixon, E. G. Allstot, D. Gangopadhyay and D. J. Allstot, "Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors," in *IEEE Transactions on Biomedical Circuits and Systems*, vol. 6, no. 2, pp. 156-166, April 2012.

