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Presentation summary 
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1. Wireless sensor networks and smart sensors 

 

2. Principle of compressive sensing 

 

3. Architecture for analog to information converters 

 

4. Signal reconstruction algorithms 

 

5. Conclusion 
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Wireless sensor networks 

and smart sensors 

 What are the constraints for WSN and 

smart sensors ? 

 

 How to overcome these constraints ? 

1. Wireless sensor 

networks and smart 

sensors 

 

2. Principle of 

compressive sensing 

 

3. Architecture for analog 

to information 

converters 

 

4. Signal reconstruction 

algorithms 

 

5. Conclusion 
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Wireless sensor network architecture 
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Example of the Body Area Sensor Network 

Group activity: 

• 4/5 students, 5 minutes 

• Make a list of the constraints for the sensors and rank them 
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New challenges 
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Security 

• Data confidentiality and integrity 

• Security mechanisms embedded into circuits 

 

Interoperability 

• Interferences between WSN 

• Specific communication protocols 

 

Data transfer 

• Increasing amount of data and bandwidth 

• Saturation of the RF spectrum 

 

Power consumption 

• Sensor working on batteries 

• Energy source replacement is not always possible 
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Cardiac arrhythmia detection 

• Heart diseases responsible for 15.5 % of worldwide death 

• Well studied subject 

 

ECG signal characteristics 

• Continuous signal 

• Cycle duration: 0.5 – 0.9 s 

• Sampling frequency: 200 – 1000 Hz 

• Precision: ~ 10 bits 

Application 

• Arrhythmia detection from [1] 

• Signal is 800 10-bit samples 

• 1 kHz sampling frequency 

[1] T. Chen et al . Design of a Low-Power On-Body ECG Classifier for Remote Cardiovascular Monitoring Systems. IEEE Journal on Emerging 

and Selected Topics in Circuits and Systems, March 2013 
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Analog-to-digital 

converter [2] 

 

• 0.18 m CMOS 

• 0.12 pJ/sample 

 

96 pJ 

Bluetooth Low Energy 

transceiver [3] 

 

• 0.13 m CMOS 

• Emitter: 14.5 mW 

• Receiver: 6.5 mW 

 

Arrhythmia detection with 

linear classification [1] 

 

• 0.13 m CMOS 

• Post-layout simulation 

 

11.6 mJ 5.2 mJ 749 nJ 77 nJ 

[2] L. Yan et al. A 0.5- V 12- W Wirelessly Powered Patch-Type Healthcare Sensor for Wearable Body Sensor Network. IEEE Journal of Solid-

State Circuits, November 2010. 

[3] A. C. W. Wong et al. A 1 V 5 mA Multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications. IEEE 

Journal of Solid-State Circuits, January 2013. 

Sensor 

Transmission require the most energy 
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Sensor Data Hub 

Compress the data during acquisition: compressed sensing 

• Use knowledge on signal structure 

• Reduce the amount of data to be transmitted 

Analog-to-information converter [4] 

• 0.13 m CMOS 

• 4 fold compression  

• 14 pJ/compressed sample 

2,8 nJ 30,7 J 

Sensor energy 

requirement is 

divided by 377 
Limitations 

• Reconstruction Algorithm is complex  

• Reconstruction error increases with the compression factor 

[4] D. Gangopadhyay et al. Compressed Sensing Analog Front-End for Bio-Sensor Applications. IEEE Journal of Solid-State Circuits February 2014. 
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Example 2: Astrophysical measurements 
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Radio emission from Jupiter 

• S-burst: interaction between Jupiter and its satellite Io 

• Range: [0.45  40] MHz 

• Digital receiver connected  

to the Nançay Decametric  

Array in France 
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Example 2: Astrophysical measurements 
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Receiver  

• Spectrogram of Jovian Signal 

• 14 bit @ 80 Ms/s 

• 5 sec = 5.6 billions bits 

• Vertical lines: periodic calibrations 

• Horizontal lines: terrestrial radio 

broadcasts (radars, radio, TV) 

 

 

Useful information 

• Frequency drift: green slope 

• Value around 20 MHz/s 

 

 

 

How to get this information with far fewer samples? 
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Principle of compressive 

sensing 

 What is compressive sensing? 

 

 What are its pros and cons? 

1. Wireless sensor 

networks and smart 

sensors 

 

2. Principle of 

compressive sensing 

 

3. Architecture for analog 

to information 

converters 

 

4. Signal reconstruction 

algorithms 

 

5. Conclusion 
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Nyquist and Information rate 
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Nyquist Rate 

• Shannon-Nyquist theorem for perfect 

reconstruction: Fs  2Fmax =2B 

• Signal representation require 2*W*T 

samples 

• For T=1 ms and B=123 kHz => 246 

samples 

Information Rate 

• Entropy of the signal 

• Reduced by a-priori information 

• 5-tone signal: 10 elements  

• f1 to f5 and p1 to p5 

f1 f2 f3 f4 f5 

p1 

p2 

p3 
p4 

p5 

CS: Acquire signal as close to IR as possible 
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Sparse signal 
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Definition 

A signal is k-sparse if it can be represented with only k non-zero element in 

a specific base  

Example 

ECG signal and its 4-level Db4 

wavelet transform 

Audio signal and its 

Fourier transform 
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Acquisition of sparse signal 
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Sparse signal 𝑠 
k-non zero entries 

Signal 𝑥 in time 

domain 
Sparsifying Matrix Ψ 

𝒙 = 𝚿𝒔 
Typical sparsity basis 

• Time:  Ψ = 𝐼𝑁 

• Fourier domain: Ψ = 𝐷𝐹𝑇−1 

• Wavelet domain: Ψ = 𝐷𝑊𝑇−1 

 

𝑁 × 1 𝑁 × 1 𝑁 × 𝑁 
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Compressed sensing 
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𝒚 = 𝚽𝒙 = 𝚽𝚿𝒔 

Principle 

• Take only M samples or linear measurement instead of N 

𝑁 × 1 𝑁 × 𝑁 

𝑀 ×𝑁 𝑀 × 1 

𝑦 

Measurements matrix Φ 

Can we find 𝒙 or 𝒔 from 𝒚 ? 

𝑀 ≪ 𝑁 
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Signal Recovery 
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Principle 

• Given 𝑦 = ΦΨ𝑠 
• Find 𝑠 with maximal sparsity 

• 𝑀 ≪ 𝑁: Many possible solutions ill-posed inverse problem 

Solution:  add constraint 

• Use 𝑙2norm: 𝑠 = argmin 𝑠 2 𝑠. 𝑡:  𝑦 = ΦΨ𝑠 
• Wrong: output a non sparse solution 

 

• Use 𝑙0 norm: 𝑠 = argmin 𝑠 0 𝑠. 𝑡:  𝑦 = ΦΨ𝑠 

• Exact solution but NP hard problem (require exhaustive search) 

 

• Use 𝑙1 norm: 𝑠 = argmin 𝑠 1 𝑠. 𝑡. :  𝑦 = ΦΨ𝑠 

• Linear problem and high probability of exact solution if 𝑀 big enough [5] 

• Minimum 𝑀 depends on measurement matrix and signal sparsity 

[5] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles : exact signal reconstruction from highly incomplete frequency 

information. IEEE Transactions on Information Theory, 52(2) :489–509, February 2006. 

True for any measurement matrix 𝚽 ? 
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Restricted Isometry Property (RIP) 

• Assuming 𝑠 is k-sparse 

• ∀𝑝𝑘 𝑘 − 𝑠𝑝𝑎𝑟𝑠𝑒 1 − 𝛿𝑘 𝑝𝑘 2
2 ≤ ΦΨ𝑝𝑘 2

2 ≤ 1 + 𝛿𝑘 p𝑘 2
2 

• 0 ≤ 𝛿𝑘 ≤ 1 is the isometry constant of ΦΨ 

Coherence 

• 𝜇 Φ,Ψ = 𝑁 max
1≤𝑗,𝑘≤𝑁

| 𝜙𝑗 , 𝜓𝑘
𝑇 | 

• Ensure that every measurement carries useful amount of information of non-

zero element of 𝑠. 
• Must be as close as possible to lower bound 1 

Hard to 

check in 

practice 

Practical measurement matrices 

• Random matrices 

• +/- 1 Bernoulli matrices 

• Random row selection matrices 

(Only for non time sparse signal)  
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Performance evaluation 
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Reconstruction SNR (RSNR) 

𝑅𝑆𝑁𝑅 =
𝑠 2

2

𝐸( 𝑠 − 𝑠 2
2)
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Where to apply CS in processing chain? 
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Sensor level 

• Relax RF data throughput 

Analog Receiver level 

• Relax RF signal acquisition 

Storage level (compression) 

• Relax memory requirements 
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Architecture for analog to 

information converters 
1. Wireless sensor 

networks and smart 

sensors 

 

2. Principle of 

compressive sensing 

 

3. Architecture for analog 

to information 

converters 

 

4. Signal reconstruction 

algorithms 

 

5. Conclusion 
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A2I converter advantages 
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Traditional ADC are limited in the maximum achievable SNDR for a given bandwidth  

 (Murmann 2015) 

Objectives 

• Improve effective bandwidth by using sparsity of input signal 

• Improve resolution (SNDR) by sub-Nyquist sampling 

• Decrease the amount of sample acquired 
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Let’s think a bit 
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• Form three team within the class 

• Each team think of an architecture to implement a A2I converter  

Team 1 Team 2 Team 3 
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Signal reconstruction 

algorithms 
1. Wireless sensor 

networks and smart 

sensors 

 

2. Principle of 

compressive sensing 

 

3. Architecture for analog 

to information 

converters 

 

4. Signal reconstruction 

algorithms 

 

5. Conclusion 
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Problem statement 
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𝒚 = 𝚽𝒙 = 𝚽𝚿𝒔 = 𝚯𝐬 
𝑁 × 1 𝑁 × 1 𝑁 × 𝑁 

𝑀 ×𝑁 𝑀 × 1 

𝑦 

Measurements matrix Φ 

Can we find 𝒔 from 𝒚 ? 

𝑀 ≪ 𝑁 

𝑠 
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Convex optimization solution 
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Basis Pursuit (BP) 

• Solve: 𝑠 = argmin 𝑠 1 𝑠. 𝑡. :  𝑦 = Θ𝑠 
• Will find the sparsiest solution 

• Might not converge if noisy measurements 

Least absolute shrinkage and selection operator (LASSO) 

• Solve: 𝑠 = argmin 𝑠 1 𝑠. 𝑡. : 𝑦 − Θ𝑠 2 < 𝜖 

• The solution is more robust to noise 

• Noise controlled with 𝜖 

Basis Pursuit De-Noising (BPDN) 

• Solve: 𝑠 = argmin 𝑦 − Θ𝑠 2
2 + 𝜆 𝑠 1 

• Make a compromise between error and sparsity 

• Controlled by 𝜆 
Solving method 

• Primal-dual interior point  

• Adaptive gradient Complexity in 𝑶 𝑵𝟑 ! 
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Principle 

• Find a solution with iterative process 

• At each iteration choose the best solution according to certain criteria 

• Pro: less complex 

• Con: does not guarantee a global optimum, only a local one  

Example 

• Find the largest sum while descending a tree 

• Greedy criteria: choose the path providing the highest result 

5 

8 

12 

6 

9 

90 25 

Greedy solution: 42 

Optimal solution: 104 
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Greedy algorithm 
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Orthogonal Matching Pursuit 

• Find a K-sparse solution by selecting non-zero element one by one 

Input 

• 𝑀 ×𝑁 measurement matrix Θ 

• Measurement vector 𝑦 

• K 

Initialization 

• Residual: 𝑟0 = 𝑦 

• Index set: Ω𝑡 = ∅ 

• Matrix of chosen atom: Θ0 = [ ] 
• Vector of signal amplitude: 𝑎0 =   

• Increment index: 𝑡 = 1 

Procedure 

1. Find: 𝜔𝑡 = arg max
1≤𝑗≤𝑁

| 𝑟𝑡−1, 𝜃𝑗 |  

2. Update: Ω𝑡 = Ω𝑡−1 ∪ 𝜔𝑡;   Θ𝑡= Θ0  𝜃𝜔𝑡
 

3. Solve: 𝑎𝑡 = argmin
𝑥

Θ𝑡𝑥 − 𝑦 2 

4. Update residual: 𝑟𝑡 = 𝑦 − Θ𝑡𝑎𝑡 

5. Do 𝑡 = 𝑡 + 1 

6. Repeat until 𝑡 = 𝐾 

Find column with maximum correlation with residue 

Least square problem 
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Greedy algorithm 
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Compressive Sampling Matching Pursuit (CoSaMP) 

• Similar to OMP 

• Select the 2𝐾 maximum correlation columns 

• Keeps only the 𝐾 highest value of 𝑎𝑡 

Normalized Iterative Hard Thresholding (NIHT) 

• Do not try select columns to minimize residual 

• Select solution: 

• Minimizing the residual 

• Maximizing the difference between the current solution and previous one 

Method OMP CoSaMP NIHT 

Complexity 𝑂(𝐾𝑀𝑁) 𝑂(log(𝐾)𝑀𝑁) 𝑂(log(𝐾)𝑀𝑁) 
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Algorithms comparison for biosensors [9] 
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There is no general best choice 
[9] A. M. R. Dixon, E. G. Allstot, D. Gangopadhyay and D. J. Allstot, "Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors," 

in IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 2, pp. 156-166, April 2012. 
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Conclusion 1. Wireless sensor 

networks and smart 

sensors 

 

2. Principle of 

compressive sensing 

 

3. Architecture for analog 

to information 

converters 

 

4. Signal reconstruction 

algorithms 

 

5. Conclusion 
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Conclusion 
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• Acquisition and reconstruction must be robust to acquisition noise 

• How to quantize the measurement? 

• How to find the ideal basis giving a sparse signal 

• Use of random matrices. Could we find more practical matrices? 

• Development of efficient embeddable recovery algorithms 

• Can we exploit the signal in its compressed form? 

CS take advantages of the signal sparsity to overcome 

sensing problems 

But there are many remaining challenges 
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Towards Analog to feature/classification 

converter  
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 Extract feature directly from the analog signal 

 Use classifier with the extracted features 

Compressed sensing? 
Detect diseases 

Activity detection 

RF constellation recognition 

Facial recognition 
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